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The characteristic Galerkin finite element method for the discrete Boltzmann
equation is presented to simulate fluid flows in complex geometries. The inher-
ent geometric flexibility of the finite element method permits the easy use of simple
Cartesian variables on unstructured meshes and the mesh clustering near large gra-
dients. The characteristic Galerkin procedure with appropriate boundary condition
results in accurate solutions with little numerical diffusion. Several test cases are
conducted, including unsteady Couette flows, lid-driven cavity flows, and steady
flow past a circular cylinder on unstructured meshes. The numerical results are in
good agreement with previous analytical (if applicable), numerical, and experimental
results. c© 2001 Academic Press
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1. INTRODUCTION

The lattice Boltzmann equation (LBE) method has been demonstrated to be an effective
tool in simulating flow through porous media, multiphase flow, and interfacial flow phe-
nomena [1]. The conventional LBE method, however, requires regular structured meshes.
Since He and Luo [2, 3] and Abe [4] demonstrated that the LBE is a discretized form of the
continuous Boltzmann equation and the discretization of physical space is not coupled with
the discretization of momentum space, several efforts have been made to address the issue
concerning the treatment of curved boundaries and the control of grid density at desirable
regions. Significant progress has been achieved in recent years.

Filippova and Hänel [5] developed a second-order accurate boundary condition for the
LBE method to treat a curved boundary on the regular structured mesh. Meiet al. [6] im-
proved this scheme and further extended it to three dimensions [7]. Heet al.[8–10] proposed
an interpolation-supplemented LBE model (ISLBE) to simulate a two-dimensional channel
flow with sudden expansion on a nonuniform mesh, and steady and unsteady flows past a
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circular cylinder in a curvilinear coordinate system. This method adds a new interpolation
step between the streaming and relaxation steps in the conventional LBE method and retains
the locality property of the two steps. Caoet al. [11] indicated that the LBE method is a
special finite-difference discretization of the kinetic equation of the discrete velocity distri-
bution function, and thus the application of nonuniform meshes and semiimplicit collision
scheme to the LBE is possible. On this basis, Mei and Shyy [12] developed a LBE method
in a generalized body-fitted coordinate system, solving fluid flow problems in complex
geometries. Succiet al. [13] and Xi et al. [14, 15] proposed finite-volume LBE methods
for simulation of fluid flows in complex geometries.

In order to solve the LBE in complex geometries while preserving the advantages of the
conventional LBE method such as data locality and little numerical diffusion, we present the
characteristic Galerkin finite element method [16] for solving the discrete Boltzmann equa-
tion (CGDBE). For scalar variables with constant source terms, the characteristic Galerkin
method, which utilizes the optimal approximation along the characteristics, is identical to
the Taylor–Galerkin method [17, 18]. The Taylor–Galerkin method is a generalization of
the Lax–Wendroff method [19] in the context of finite elements.

Since the inherent geometric flexibility of the finite element method permits the easy use
of simple Cartesian variables on unstructured mesh for arbitrary complex geometries [20],
there is no need for global mapping and global transformation of equations to covariant
(or contravariant) components. Since the spatial domain is discretized at the element level
and interelemental communications are required only when the discretized matrix is solved
by the conjugate-gradient type iterative solver, the finite element method can exploit the
parallelism in a straightforward manner. In addition, this matrix is well-conditioned and the
conjugate-gradient algorithm is favorable to parallelism.

If the original differential operator is self-adjoint (symmetric), the Galerkin spatial dis-
cretization of the operator is also self-adjoint. This feature makes the Galerkin discretization
of the discrete Boltzmann equation along the characteristics optimal and helps to reduce
numerical error. It is noteworthy that Matsushita [21] applied the standard Galerkin method
to the one-dimensional continuous Boltzmann equation, but did not utilize the feature of
self-adjointness.

This paper is organized as follows. In Section 2, the numerical formulation of the CGDBE,
the boundary condition, and the accuracy and stability analyses are described. The present
CGDBE method is applied to solve three test cases: unsteady Couette flows, lid-driven
cavity flows, and steady flows past a circular cylinder. The numerical results are presented
in Section 3 and are compared with previous numerical results. Concluding remarks are
given in Section 4.

2. NUMERICAL FORMULATIONS

In this section we present the governing equations, the numerical formulations of the
CGDBE, the boundary condition, and the accuracy and stability analyses.

2.1. Governing Equation

The continuous Boltzmann equation with the Bhatnagar–Gross–Krook collision operator
[22] reads

∂ f

∂t
+ ξ ·∇ f = −1

λ

(
f − f (0)

)
, (1)
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FIG. 1. Two-dimensional square lattice model with a length scaleδx.

where f is the single-particle distribution function,ξ is the microscopic velocity,∇ f is the
gradient of the functionf, λ is the relaxation time due to collision, andf (0) is the Maxwell–
Boltzmann distribution function. If a nine-velocity LBE model on a square lattice is used,
and the Boltzmann–Maxwellian distributionf (0) is expanded as a Taylor series up to (u · u),
we obtain the discrete Boltzmann equation [23]

∂ fα
∂t
+ eα ·∇ fα = −1

λ

(
fα − f eq

α

)
, (2)

whereα = 0, 1, . . . ,8. The discrete velocityeα is expressed as (refer to Fig. 1 for the
direction represented by the subscriptα)

eα =


(0, 0) α = 0

(cosθα, sinθα), θα = (α − 1)π/4, α = 1, 3, 5, 7√
2(cosθα, sinθα), θα = (α − 1)π/4, α = 2, 4, 6, 8.

(3)

The equilibrium distribution functionf eq
α is defined as

f eq
α = wαρ

[
1+ 3(eα · u)+ 9

2
(eα · u)2− 3

2
(u · u)

]
, (4)

with the weightsw0= 4/9, w1=w3=w5=w7= 1/9, andw2=w4=w6=w8= 1/36 [2].
The macroscopic densityρ and velocity vectoru are related to the distribution function by

8∑
α=0

fα = ρ,
8∑
α=1

eα fα = ρu. (5)

The pressure can be calculated fromp = c2
sρ with the speed of soundcs = 1/

√
3 and the

viscosity of the fluid isν = λc2
s.
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2.2. Characteristic Galerkin Approximation

In what follows, the characteristic Galerkin procedure by Zienkiewicz and Codina [16]
will be applied to the discrete Boltzmann equation Eq. (2). Letx̃(xref, tref; t) denote the
trajectory (or characteristic) of the particle that passes the spatial pointxref at timet = tref,
so thatx̃(xref, tref; tref) = xref. Herexref is an arbitrary point on the trajectory of the particle
between timetn andtn+1. Thus, the left-hand side of Eq. (2) can be expressed as

d

dt
fα(x̃(t), t)

∣∣∣∣
t=tref

=
(
∂ fα
∂t
+ eα ·∇ fα

)∣∣∣∣
x=xref,t=tref

, (6)

wherexref andtref in x̃(xref, tref; t) are omitted for brevity. It is understood that the convective
term disappears along the characteristics. Sincex̃ = xref at t = tref, Eq. (2) may be recast as

d

dt
fα(x̃(t), t) = −1

λ

[
fα(x̃(t), t)− f eq

α (x̃(t), t)
]
, (7)

which becomes self-adjoint in space and the standard Galerkin spatial approximation of the
equation is optimal.

Assume thatfα at time tn is known and we want to compute it at timetn+1. The dis-
cretization of Eq. (7) in time yields

fα(x̃(tn+1), tn+1)− fα(x̃(tn), tn) = −θ 1t

λ

[
fα(x̃(tn+1), tn+1)− f eq

α (x̃(tn+1), tn+1)
]

− (1− θ)1t

λ

[
fα(x̃(tn), tn)− f eq

α (x̃(tn), tn)
]
, (8)

wheretn+1 = tn +1t, x̃(tn+1) = x̃(tn)+1teα andθ ∈ [0, 1]. To obtain a second-order
approximation one must chooseθ = 1/2.

Equation (8) can be solved very efficiently on the regular, structured mesh that coincides
with the underlying lattice. For instance, withθ = 0 Eq. (8) reduces to the conventional
lattice Boltzmann equation

fα(x̃(tn+1), tn+1)− fα(x̃(tn), tn) = −1t

λ

[
fα(x̃(tn), tn)− f eq

α (x̃(tn), tn)
]
. (9)

To maintain second-order accuracy, one must chooseν = (λ/1t − 0.5)c2
s1t to account for

the leading order truncation error in the Chapman–Enskog expansion. If we are to solve
Eq. (8) on the unstructured mesh in complex geometries, however, we need to make use of
the local approximation forfα(x̃(tn), tn) with fα(xref, tn) at the expense of computational
efficiency. Althoughxref is completely arbitrary betweeñx(tn) and x̃(tn+1), we choose
xref = x̃(tn+1) since it introduces some additional terms that enhance the stability of the
numerical scheme [16]. From the geometrical point of view, we move backward relative
to the particle followed. A simple one-dimensional, characteristic Galerkin procedure is
illustrated in Fig. 2.

x̃(tn) = x̃(tn+1)−1teα = xref−1teα (10)
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FIG. 2. A simple one-dimensional characteristic Galerkin procedure.

and therefore

fα(x̃(tn), tn) = fα(xref−1teα, tn)

= f n
α −1teαr

∂ f n
α

∂xr
+ 1t2

2
eαr eαs

∂

∂xs

∂ f n
α

∂xr
+ O(1t3), (11)

where f n
α = fα(xref, tn), eα = (eα1, eα2), and summation is applied to the repeated indices

r ands. An expression forf eq
α (x̃(tn), tn) is obtained in the same manner. Using Eq. (11) to

approximate the terms in Eq. (8) withθ = 1/2 and neglecting higher order terms give

f n+1
α − f n

α = −1t

[
eαr
∂ f n
α

∂xr
+ 1

λ

(
fα − f eq

α

)n+1/2
]

+ 1t2

2
eαs

∂

∂xs

[
eαr
∂ f n
α

∂xr
+ 1

λ

(
fα − f eq

α

)n
]
+ O(1t3). (12)

Although f n+1/2
α in Eq. (12) can easily be approximated (e.g., by the Crank–Nicolson

method), the equilibrium distribution functionf eq,n+1/2
α does not permit such an easy treat-

ment. There are several options to approximatef eq,n+1/2
α . One can approximatef eq,n+1/2

α

by f eq,n
α and f n+1/2

α by f n
α in spite of the severe stabilily limit caused by smallλ. If f n+1/2

α

is approximated byf n+1
α and f eq,n+1

α by f eq,n
α , the stability limit may be overcome but a

noticeable phase lag is observed. Mei and Shyy [12] proposed an extrapolation method that
uses f eq

α at time tn and tn−1. As they pointed out, however, the extrapolation method for
f eq
α is subject to numerical instability. In order to prevent the instability introduced by the

extrapolation and circumvent the stability limit imposed by the relaxation term, we present
the second-order accurate predictor-corrector method.

In the predictor step, we approximatef n+1/2
α by f n+1

α and f eq,n+1/2
α by f eq,n

α . The gain
is that the stability of the CGDBE is now mainly up to the convection stability limit known
as the CFL condition because of the implicit treatment offα in the relaxation term. The
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loss is thatfα after a predictor step suffers a phase lag so that it might not lie at timetn+1,
but somewhere between timestn and tn+1. This fα, however, is found to serve as a good
approximation tof n+1/2

α .
The predictor-corrector method can be expressed as follows.

• Predictor Step

f̂ α − f n
α = −1t

[
eαr
∂ f n
α

∂xr
+ 1

λ

(
f̂ α − f eq,n

α

)]+ 1t2

2
eαs

∂

∂xs

[
eαr
∂ f n
α

∂xr
+ 1

λ

(
fα − f eq

α

)n
]
.

(13)

Here f̂ α is taken as an approximation off n+1/2
α which represents some average value

between timestn andtn+1. Likewise, f eq,n+1/2
α can be approximated as

f eq,n+1/2
α ≈ f̂ eq

α = wαρ̂
[
1+ 3(eα · û)+ 9

2
(eα · û)2− 3

2
(û · û)

]
, (14)

where ˆρ =∑8
α=0 f̂ α andρ̂û =∑8

α=1 eα f̂ α.

• Corrector Step

f n+1
α − f̂ α = −1t

λ

(
f eq,n
α − f̂ eq

α

)
. (15)

Numerical experiments show that this predictor-corrector method does not suffer from the
phase lag which plagues Eq. (13).

We now apply the Galerkin finite element method to Eq. (13). Suppose that the domain
Ä is discretized into an appropriate collection of finite elements, which are bilinear quadri-
lateral or triangular elements in the present study. The weak form of Eq. (13) is derived
by multiplying it with the weighting function and integrating over the spatial domain of
the problem. LetH1 denote the Sobolev space of vector functions defined on the spatial
domainÄ. We then perform integration by parts on the terms introduced by the characteris-
tic Galerkin procedure and apply the divergence theorem. Since Eq. (13) is derived from a
self-adjoint problem in space, the spatial discretization by the Galerkin method is optimal.

The Galerkin approximation is to find an approximate solutionf (h)α of the following form
in a finite dimensional subspaceHh of the spaceH1.

f (h)α = NT fα, (16)

whereNT = {N1, N2, . . . , Nne} is a (1× ne) vector of interpolation functions of the el-
ementÄe, the superscript (·)T denotes the transpose operation, andne is the number of
nodal points in an element.fα is a (ne× 1) vector of nodal particle distribution functions.
Likewise, f eq,(h)

α = NT f eq
α for the equilibrium function.

By applying the Galerkin method to Eq. (13) and expressing Eq. (15) in vector form, one
obtains
• Predictor Step

M
(
f̂α − f n

α

) = −1t

{
Cαf n

α +
1

λ
M
(
f̂α − f eq,n

α

)+1t
[
Dαf n

α +Qα

(
f n
α − f eq,n

α

)]}
. (17)
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• Corrector Step

f n+1
α − f̂α = −1t

λ

(
f eq,n
α − f̂ eq

α

)
, (18)

where (ne× ne) matricesM , Cα, Dα, andQα are defined as

M =
∫
Äe

NNT dÄ, (19)

Cα =
∫
Äe

Neαr
∂NT

∂xr
dÄ, (20)

Dα = −1

2

∫
Äe

Neαr eαs
∂2NT

∂xs∂xr
dÄ, (21)

Qα = − 1

2λ

∫
Äe

Neαs
∂NT

∂xs
dÄ. (22)

Dα andQα are introduced by the discretization along the characteristics and help to stabilize
Eq. (17). In general, one integrates Eq. (21) by parts and applies the divergence theorem of
Gauss to obtain

Dα = 1

2

(∫
Äe

∂N
∂xs

eαseαr
∂NT

∂xr
dÄ−

∮
0e

Nnseαseαr
∂NT

∂xr
d0

)
, (23)

where0e denotes the surface of elements andns are the components of the outward vector
normal to0. The second term on the right-hand side is the surface integral and cancels
out in the interior of the domainÄ. It is noteworthy that the first term on the right-hand
side of Eq. (23) multiplied by1t2 is identical in form to the balancing tensor diffusivity
(BTD) [20] and is similar to the streamline upwind term [24]. The BTD is to compensate
the truncation error of the pure advection equation discretized by the forward Euler method,
and the streamline upwind term is to add optimal diffusion to the governing equation in
the streamline direction. Exclusion of the term associated withQα from Eq. (17) tends to
result in excessive numerical diffusion, and thus lower Reynolds number flows. With none
of these terms, the method is likely to be unstable.

2.3. Boundary Condition

The surface integrals in Eq. (23) in the interior of the domain cancel out and those at
the domain boundary remain to be determined by boundary conditions. For the essential
boundary condition, Eqs. (17) and (18) at the boundary nodes are dropped and replaced by
the prescribedfα values. If the boundary condition is natural, the normal flux associated with
the surface integral in Eq. (23) is specified. For the CGDBE and LBE methods, however,
neither essential or natural boundary conditions seem to be appropriate because usually
boundary conditions are given for macroscopic variables, such as fluid velocities, pressure,
or their gradients, but not for particle distribution functions.

Several attempts to reconstruct boundaryf n+1
α from the constraints in Eq. (5) have been

made [25–28]. Nevertheless, it is not easy to generalize these boundary conditions for the
use of complex geometries and three-dimensional problems. The widely used bounce-back
scheme and equilibrium boundary condition are easy to implement, but are of lower order
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accuracy [29]. Chenet al.[30] and Mei and Shyy [12] took an alternative approach that can
preserve the overall order of accuracy of the LBE methods. In the extrapolation scheme of
Chenet al. [30], the values off n

α at the fictitious nodes adjacent to the boundary nodes are
obtained by linear extrapolation prior to the streaming step. In the finite difference-based
LBE method in body-fitted coordinates, Mei and Shyy [12] used the one-sided difference
scheme to approximate the gradients off n

α at the boundary nodes and demonstrated that
the extrapolation scheme leads to the one-sided difference at the boundary nodes. In both
schemes, macroscopic boundary conditions are incorporated throughf eq

α and the LBEs at
the boundary nodes are solved forf n+1

α at the domain boundary.
This approach is akin to the “no” boundary condition that is used as an outflow boundary

condition in finite element methods [20, 30–34]. The idea of “no” boundary condition is
simply not to perform integration by parts on the equations associated with the boundary
nodes because “no” information on variables at timetn+1 is used. Thus construction of
Eq. (17) at the boundary nodes only involves the elements adjacent to the boundary nodes
and f n

α without any assumptions onf n+1
α and its gradient, similar to the above extrapola-

tion scheme and one-sided difference approximation. But a major difference between the
original “no” boundary condition and its application to the CGDBE is that the latter permits
macroscopic boundary conditions to be reflected throughf eq

α while mesoscopic boundary
conditions for f n+1

α remain unspecified.
Numerical experiments by [12, 30] and those to be presented later show that the ap-

proach, which treatsf n+1
α at the domain boundary as part of the solution and imposes

physical boundary conditions throughf eq
α , can be applied to stationary/moving walls and

inlet/outlet boundaries. The physical Neumann boundary condition can also be implemented
by assigning the updated values of macroscopic variables at the interior nodes next to the
domain boundary to the boundary nodes in the direction that the Neumann condition is
applied. Interpolation is required if the grid lines near the domain boundary are not parallel
to the direction of the Neumann condition.

2.4. Accuracy and Stability

As shown in Section 2.2, the present CGDBE scheme is of second-order accuracy in
time. However, the spatial accuracy depends on the shape of interpolation functions. For a
piecewise linear shape function, it can be shown that transient solutions for the pure advec-
tion equation on uniform meshes enjoy fourth-order spatial accuracy and zero numerical
diffusion (see Appendix). The relaxation term has no effect on the spatial accuracy.

Equation (17) is only conditionally stable because the convection term is treated explic-
itly. The stability condition for pure convection problems with linear elements is given as
[16, 35]

1tconv≤ h

3|e| , (24)

wheree is the discrete velocity in the characteristic direction andh is the element size in
that direction.

3. RESULTS

In this section we present several test cases and compare with previous analytical and
numerical results. Unsteady Couette flow, lid-driven cavity flow, and steady flow past a
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circular cylinder will be examined. For all cases, the boundary condition is imposed through
f eq
α with the prescribed velocity as described in Section 2.3.

3.1. Unsteady Couette Flow

In order to evaluate the temporal accuracy of the CGDBE, we examine unsteady Couette
flow. The top plate moves at a constant velocity,u = (U, 0) and the bottom one is kept
stationary. A periodic boundary condition is applied in thex-direction. Mach number Ma
is 0.1 and the velocity of the top plate is calculated by the relationU = cs Ma. The fluid
densityρ is 1.0 and the Reynolds number Re= U L

ν
is 10, whereL is the channel width.

The Navier–Stokes equation for this simple two-dimensional parallel flow reduces to

∂u(y, t)

∂t
= ν ∂

2u(y, t)

∂y2
. (25)

The analytical solution of this equation is

u(y, t) = U
y

L
+
∞∑

m=1

2U (−1)m

λmL
e−νλ

2
mt sinλmy, (26)

whereλm = mπ
L , m= 1, 2, 3 . . . .

Figure 3 shows a series of normalized velocity profiles at different times for this flow.
The solid lines represent the analytical solution and the circles represent the CGDBE results
obtained using 20 elements in they-direction. The numerical solutions are in excellent
agreement with the analytic counterparts.

FIG. 3. Normalized velocity profiles across the normalized channel width at different times.
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FIG. 4. The error as a function of time step.

For calculation of the temporal accuracy, 20, 40, and 80 uniform bilinear quadrilateral
elements are used in they-direction. Both time step and Mach number are systematically
reduced as the mesh size decreases with a constant CFL number and a1t/Ma ratio. The
following average error measure is used.

ε =
∑

i

∣∣uanalytic
i − uCGDBE

i

∣∣
N

, (27)

whereN is the number of grid points in they-direction. The error is plotted against normal-
ized time step (1t = 1 for the largest time step) in Fig. 4. The CGDBE error curve follows
the slope of the second-order scheme.

3.2. Lid-Driven Cavity Flow

Although the simulation of lid-driven cavity flow is a well-known benchmark problem,
it is not a trivial one because of the difficulty in capturing flow phenomena near numerical
singularities at the top corners of the cavity. Therefore, it is desirable to refine the mesh near
those singular points. The reasons for choosing lid-driven cavity flow as a test problem are
to evaluate the spatial accuracy of the CGDBE at steady state and to demonstrate advantages
of using nonuniform meshes.

3.2.1. Spatial accuracy evaluation at Re= 400. The Reynolds number is defined as
Re= U L/ν, whereU is the velocity of the top lid andL is the length of the top lid. The
solutions are obtained using Ma= 0.1, L = 1.0, andρ = 1.0. The equilibrium distribution



346 LEE AND LIN

function is used to specify initial conditions. The convergence criterion is∑
i

∣∣φn
i − φn−1

i

∣∣
N

< ε, (28)

whereN denotes the total number of nodes, the superscriptn denotes the time level,φ is
any macroscopic variable, andε is the error criterion set to 1.0e−7 in the present study.

In order to demonstrate the spatial accuracy of the CGDBE, calculations are performed
on three systematically refined uniform meshes using 64× 64, 128× 128, and 256× 256
rectangular elements (denoted by the subscripts 4h, 2h, andh, respectively). Since the ratio
of the mesh size on successive meshes is 2, the order of the scheme,p, can be estimated as
follows [36].

p =
ln
(
φ2h −φ4h

φh −φ2h

)
ln 2

. (29)

This leads top= 2.1, confirming that the spatial accuracy of the CGDBE is of second order
for the steady state solution.

3.2.2. Nonuniform mesh calculation.Using a 65× 65 nonuniform mesh, calculations
are performed for Re= 400, Re= 1000, Re= 3200, and Re= 5000. For all cases Ma=
0.1,L= 1.0, andρ = 1.0. Figures 5–7 show contour plots of stream function, vorticity, and

FIG. 5. Stream functions of the cavity flow: (a) Re= 400; (b) Re= 1000; (c) Re= 3200; (d) Re= 5000.
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FIG. 6. Vorticity contours of the cavity flow: (a) Re= 400; (b) Re= 1000; (c) Re= 3200; (d) Re= 5000.

pressure, respectively. The flow structure is in good agreement with previous results of Ghia
et al. [37]. Comparison of the profiles of the horizontal velocity component in the vertical
symmetry plane is shown in Fig. 8. Table I lists the locations and values of stream function
for the vortices. The results of Ghiaet al. [37] and Houet al. [29] are also displayed for
comparison. The results obtained from the nonuniform mesh indicate that the CGDBE can
simulate finite Reynolds number flow problems with fewer grid points than the LBE method.

To emphasize this point, we compare the results using the CGDBE and the conventional
LBE method [38] at Re= 400 and Ma= 0.1 with the same number of grid points on
coarse meshes. Boundary and initial conditions for the CGDBE are given as above, and
a 33× 33 nonuniform mesh is used. For the LBE method, the complete bounce-back rule
is applied at the stationary walls and the equilibrium boundary condition is applied to the
top wall. A 33× 33 uniform mesh is used for the LBE method. Figures 9 and 10 show the
velocity vectors and the pressure contours obtained from both methods. The CGDBE seems
to generate better results than the LBE method. Due to the lack of grid points, the LBE
method yields oscillatory velocities near the upper left corner of the cavity in Fig. 9b, which
can be removed by the composite LBE method [38]. The pressure field calculated from
the LBE method exhibits a severe checkerboard pattern. Profiles of the horizontal velocity
component in the vertical symmetry plane are shown in Fig. 11. Again, the LBE method
yields less accurate profile as well as the spurious slip velocity near the walls caused by the
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FIG. 7. Pressure contours of the cavity flow: (a) Re= 400; (b) Re= 1000; (c) Re= 3200; (d) Re= 5000.

FIG. 8. Profiles of normalized velocity componentu through the geometric center of the cavity at various
Reynolds numbers (profiles are shifted from the original location for comparison).
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TABLE I

Locations and Values of Maximum and Minimum Stream Function for Three Vortices

of the Lid-Driven Cavity Flows at Reynolds Numbers 400, 1000, 3200, 5000

Primary vortex Lower left vortex Lower right vortex

Re Case ψmax x/Llid y/Llid ψmin x/Llid y/Llid ψmin x/Llid y/Llid

400 Ghiaet al.a 0.1139 0.5547 0.6055−1.42e−5 0.0508 0.0469 −6.42e−4 0.8906 0.1250
Houet al.b 0.1121 0.5608 0.6078−1.30e−5 0.0549 0.0510 −6.19e−4 0.8902 0.1255
present 0.1158 0.5516 0.6024−1.32e−5 0.0529 0.0443 −6.82e−4 0.8799 0.1201

workc

1000 Ghiaet al.d 0.1179 0.5313 0.5625−2.31e−4 0.0859 0.0781 −1.75e−3 0.8594 0.1094
Houet al.b 0.1178 0.5333 0.5647−2.22e−4 0.0902 0.0784 −1.69e−3 0.8667 0.1137
present 0.1204 0.5259 0.5771−2.26e−4 0.0830 0.0830 −1.76e−3 0.8658 0.1069

workc

3200 Ghiaet al.d 0.1204 0.5165 0.5469−9.78e−4 0.0859 0.1094 −3.14e−3 0.8125 0.0859
present 0.1206 0.5259 0.5516−1.16e−3 0.0830 0.1200 −3.02e−3 0.8349 0.0830

workc

5000 Ghiaet al.a 0.1190 0.5117 0.5352−1.36e−3 0.0703 0.1367 −3.08e−3 0.8086 0.0742
Houet al.b 0.1214 0.5176 0.5373−1.35e−3 0.0784 0.1373 3.03e−3 0.8078 0.0745
present 0.1217 0.5259 0.5516−1.49e−3 0.0722 0.1342 −3.47e−3 0.8181 0.0722

workc

a 257× 257 uniform mesh.
b 257× 257 lattice nodes.
c 65× 65 nonuniform mesh.
d 129× 129 uniform mesh.

lower order boundary conditions, such as the complete bounce-back rule and the equilibrium
boundary condition.

3.3. Steady Flow past a Circular Cylinder at Re= 20

We consider laminar steady flow past a circular cylinder on both structured and un-
structured meshes. The flow behind a circular cylinder remains symmetric up to Re=

FIG. 9. Velocity vectors of the cavity flow at Re= 400: (a) CGDBE; (b) LBE.
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FIG. 10. Pressure contours of the cavity flow at Re= 400: (a) CGDBE; (b) LBE.

(2u∞r0)/ν ≈ 40, whereu∞ is the free stream velocity andr0 is the cylinder radius. At a
Reynolds number of 20, a steady recirculation bubble is attached to the cylinder surface.

The structured mesh is generated inr − θ cylindrical coordinates. The stretching formula
in ther -direction is given as [12]

r = r0+ (r∞ − r0)

{
1− 1

β
arctan[(1− η) tan(β)]

}
, (30)

wherer∞ is the domain radius.η = (i − 1)/(nr − 1), wherei andnr are the grid index

FIG. 11. Profiles of normalized velocity componentu through the geometric center of the cavity at Re= 400
and Ma= 0.1 with 33× 33 grid points.
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FIG. 12. (a) Structured mesh with 129× 64 grid points, (b) unstructured mesh with 2568 grid points.

and grid number in ther -direction. For the present calculations,r0 = 0.5, r∞ = 50, β−1 =
0.65, as used by Mei and Shyy [12]. Also, Ma= 0.1, and Re= 20. At the inlet and out-
flow boundaries, the uniform velocityu = (u∞, 0) is imposed as the boundary condition.
Intervals of 128 and 64 in the respectiver andθ directions are used. The unstructured mesh
is composed of hybrid elements. Bilinear quadrilateral elements are used near the cylinder
wall to capture the boundary layer, and bilinear triangular elements are used elsewhere
since quadrilateral elements are better suited to the boundary-layer type flow and triangular
elements are quite adaptable for mesh clustering and coarsening. The number of grid points
along the cylinder wall is 64 and the total numbers of grid points and elements are 2568
and 4276, respectively. Figure 12 shows structured and unstructured mesh setups. The ratio
of the CPU time required per time step of the structured mesh calculation with 129× 64
(8256) grid points to that of the unstructured mesh calculation with 2568 grid points is
about 4.7 on the HP 9000/785 workstation. The increase in the CPU time for structured
mesh calculation is due to the increase in the number of grid points and the number of
neighbor nodes connected. Time steps are 0.004 for all cases and the steady-state solutions
are reached after 200,000 iterations.

Table II lists the quantitative geometrical parameters in the wake region. The length of
the wake region,L, is defined as the distance between the rearmost point of the cylinder
and the end of the wake. The separation angle,θs, is the angle between the rearmost point
and the point where the separation occurs. Both parameters agree well with the results
of previous studies. Note that the results of the unstructured mesh calculation agree well
with those of the structured mesh calculation in spite of fewer grid points. Table III lists
the quantitative comparisons for the drag coefficient (CD), and the stagnation pressure
coefficients at the front (Cp(π)) and the end (Cp(0)) of the cylinder. The drag coefficient
is calculated as

CD = 1

ρu2∞r0

∮
0c

Si j n j d0, (31)

wherenj are the components of the outward normal vector on the cylinder wall,0c denotes



352 LEE AND LIN

TABLE II

Comparison of Geometrical Parameters for the Flow

past a Circular Cylinder at Re = 20

Authors L/a θs

Trittona (1959) 1.86 41.6
Dennis and Changb (1970) 1.88 43.7
Nieuwstadt and Kellerb (1973) 1.786 43.37
Fornbergb (1980) 1.82 —
Mei and Shyyc (1997) 1.804 42.1
He and Doolend (1997) 1.842 42.96
Present worke 1.846 43.35
Present workf 1.85 44.08

a Experiment.
b Numerical simulation of Navier–Stokes equations.
c FDLBM with 129× 64 grid points.
d ISLBE with 181× 241 grid points.
e Structured mesh with 129× 64 grid points.
f Unstructured mesh with 2568 grid points.

the cylinder surface, and

Si j = −pδi j + ρν
(
∂ui

∂xj
+ ∂u j

∂xi

)
(32)

is the stress tensor. For the drag force in the streamwise direction, the subscripti is taken
as one. The pressure coefficient is defined as

Cp = p− p∞
1
2ρu2∞

. (33)

As shown in Table III, the drag and pressure coefficients are in good agreement with results
of previous studies.

TABLE III

Comparison of Dynamical Parameters for the Flow

past a Circular Cylinder at Re = 20

Authors CD Cp(π) −Cp(0)

Dennis and Changa (1970) 2.045 1.269 0.589
Nieuwstadt and Kellera (1973) 2.053 1.274 0.582
Fornberga (1980) 2.000 1.28 0.54
He and Doolenb (1997) 2.152 1.233 0.567
Present workc 2.030 1.256 0.593
Present workd 1.998 1.248 0.530

a Numerical simulation of Navier–Stokes equations.
b ISLBE with 181× 241 grid points.
c Structured mesh with 129× 64 grid points.
d Unstructured mesh with 2568 grid points.
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4. CONCLUSIONS

The characteristic Galerkin finite element method has been successfully applied to solving
the discrete Boltzmann equation. Due to the inherent geometrical flexibility of the finite
element method, flows in complex geometries can be easily simulated. In addition, the use
of unstructured meshes increases the numerical accuracy while reducing the computational
cost. In order to circumvent the stability limit arising from the relaxation term, the predictor-
corrector method is proposed.

Unsteady Couette flow, lid-driven cavity flow, and steady flow past a circular cylinder
are chosen as test cases. Numerical results confirm the theoretically estimated numeri-
cal accuracy of the CGDBE. Good agreement of the results from the CGDBE with the
analytical (if applicable), experimental, and previous numerical results indicates that the
CGDBE extends the applicability of the traditional LBE method to flows in complex ge-
ometries.

APPENDIX

For a constant advection velocitye, the one-dimensional pure advection equation for
f (x, t) can be written in the form

∂ f

∂t
= ft = −e

∂ f

∂x
= −efx (A.1)

or

f (x̃(tn+1), tn+1)− f (x̃(tn), tn) = 0. (A.2)

If we apply the local approximation Eq. (11) to Eq. (A.2), we obtain

f n+1− f n = −e1t f n
x −

e21t2

2
f n
xx. (A.3)

Equation (A.3) can be discretized using a Galerkin method. For a typical nodei , using
linear elements of equal size1x, we obtain the assembled finite element equation

1

6

[(
f n+1
i−1 + 4 f n+1

i + f n+1
i+1

)− ( f n
i−1+ 4 f n

i + f n
i+1

)]
= − e1t

21x

(
f n
i+1− f n

i−1

)+ e21t2

21x2

(
f n
i−1+ 2 f n

i + f n
i+1

)
. (A.4)

In order to determine the accuracy of the scheme, we will consider numerical representation
of the modified transport equation following [35]

ft + efx = aet fxx + ε∗t = εt , (A.5)

whereaet is the transient equivalent numerical diffusion,ε∗t is the residual transient trunca-
tion error, andεt is the global transient truncation error.
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Taylor series expansion off around the time instantt = n1t and the grid pointi in the
x-coordinate is

f (x ±1x, t +1t)

= f (x, t)±1x fx(x, t)+1t ft (x, t)+ 1x2

2
fxx(x, t)±1x1t fxt(x, t)+ 1t2

2
ftt (x, t)

± 1x3

6
fxxx(x, t)+ 1x21t

2
fxxt(x, t)± 1x1t2

2
fxtt(x, t)+ 1t3

6
ftt t (x, t)+ · · · .

(A.6)

Using Eq. (A.6) we obtain the general expression of the transient truncation errorεt of
Eq. (A.4) at the grid pointi and the time leveln

εt = −1t

(
1

2
ftt − e2

2
fxx

)
− 1t2

6
ftt t −1x2

(
1

6
fxxt + e

6
fxxx

)
+ O(1t3,1x4). (A.7)

Equation (A.7) can be rearranged by recursive application of the advection equations (A.1)

ftt = e2 fxx, fxxt = −efxxx, fxtt = e2 fxxx, ftt t = −e3 fxxx. (A.8)

Then, Eq. (A.7) becomes

εt = −1t

(
e2

2
fxx − e2

2
fxx

)
− 1t2

6
ftt t +1x2

(e

6
fxxx− e

6
fxxx

)
+ O(1t3,1x4)

= O(1t2,1x4). (A.9)

The transient equivalent numerical diffusion,aet, becomes identically zero and the residual
transient truncation error,ε∗t , is O(1t2,1x4) on the regular, equally spaced mesh.
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11. N. Cao, S. Chen, S. Jin, and D. Martínez, Physical symmetry and lattice symmetry in the lattice Boltzmann
method,Phys. Rev. E.E55, R21 (1997).

12. R. Mei and W. Shyy, On the finite difference-based lattice Boltzmann method in curvilinear coordinates,
J. Comput. Phys.143, 426 (1998).

13. S. Succi, G. Amati, and R. Benzi, Challenges in lattice Boltzmann computing,J. Stat. Phys.81, 5 (1995).

14. H. Xi, G. Peng, and S.-H. Chou, Finite-volume lattice Boltzmann method,Phys. Rev. E.59, 6202 (1999).

15. H. Xi, G. Peng, and S.-H. Chou, Finite-volume lattice Boltzmann schemes in two and three dimensions,Phys.
Rev. E.60, 3380 (1999).

16. O. C. Zienkiewicz and R. Codina, A general algorithm for compressible and incompressible flow—Part I.
The split, characteristic-based scheme,Int. J. Numer. Methods Fluids20, 869 (1995).

17. J. Donea, A Taylor–Galerkin method for convection transport problems,Int. J. Numer. Methods Fluids4,
1043 (1984).

18. O. C. Zienkiewicz and R. Taylor,Finite Element Method, 4th ed. (McGraw-Hill, New York, 1991), Vol. II.

19. P. D. Lax and B. Wendroff, Systems of conservation laws,Comm. Pure Appl. Math.13, 217 (1960).

20. P. M. Gresho and R. L. Sani,Incompressible Flow and the Finite Element Method(Wiley, New York, 1998).

21. T. Matsushita,Study of Evaporation and Condensation Problems by Kinetic Theory, Institute of Space and
Astronautical Science, University of Tokyo Report 541, 1976.

22. P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for collision processes in gases. I. Small amplitude
processes in charged and neutral one-component system,Phys. Rev.94, 511 (1954).

23. D. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models(Springer-Verlag,
Heidelberg, 2000).

24. A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulation for convection dominated
flows with particular emphasis on the incompressible Navier Stokes equation,Comput. Method. Appl. Mech.
Eng.32, 199 (1982).

25. D. Noble, S. Chen, J. Georgiadis, and R. Buckius, A consistent hydrodynamic boundary condition for the
lattice Boltzmann method,Phys. Fluids7(1), 203 (1995).

26. T. Inamuro, M. Yoshino, and F. Ogino, A non-slip boundary condition for lattice Boltzmann simulations,
Phys. Fluids7(12), 2928 (1995).

27. R. Maier, R. Bernard, and D. Grunau, Boundary conditions for the lattice Boltzmann method,Phys. Fluids
8(7), 1788 (1996).

28. Q. Zou and X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model,Phys.
Fluids9(6), 1591 (1997).

29. S. Hou, Q. Zou, S. Chen, G. Dollen, and A. C. Cogley, Simulation of cavity flow by the lattice Boltzmann
method,J. Comput. Phys.118, 329 (1995).
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